Edsger W. Dijkstra

Vol. 8 (9), 1965
pp. 569



348

Edsger W. Dijkstra

Solution of a Problem in
Concurrent Programming Control

E. W. DuksTRA
Technological University, Eindhoven, The Netherlands

A number of mainly independent sequential-cyclic processes
with restricted means of communication with each other can
be made in such a way that ot any moment one and only one
of them is engaged in the “critical section” of its cycle.

Introduction

Given in this paper is a solution to a problem for which,
to the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. The
paper consists of three parts: the problem, the solution,
and the proof. Although the setting of the problem might
seem somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problem indeed can be solved.

The Problem

To begin, consider N computers, each engaged in a
process which, for our aims, can be regarded as cyclic. In
each of the cycles a so-called “critical section’ occurs and
the computers have to be programmed in such a way that
at any moment only one of these N cyclic processes is in
its critical section. In order to effectuate this mutual
exclusion of critical-section execution the computers can
communicate with each other via a common store. Writing
a word into or nondestructively reading a word from this
store are undividable operations; i.e., when two or more
computers try to communicate (either for reading or for
writing) simultaneously with the same common location,
these communications will take place one after the other,
but in an unknown order.



Original Historic Documents

The solution must satisfy the following requirements.

(a) The solution must be symmetrical between the N
computers; as a result we are not allowed to introduce a

static priority.

(b) Nothing may be assumed about the relative speeds
of the N computers; we may not even assume their speeds
to be constant in time.

(¢) If any of the computers is stopped well outside its
critical section, this is not allowed to lead to potential
blocking of the others.

(d) If more than one computer is about to enter its
critical section, it must be impossible to devise for them
such finite speeds, that the decision to determine which
one of them will enter its critical section first is postponed
until eternity. In other words, constructions in which
“After you”-““After you”-blocking is still possible, although
improbable, are not to be regarded as valid solutions.

We beg the challenged reader to stop here for a while
and have a try himself, for this seems the only way to get
a feeling for the tricky consequences of the fact that each
computer can only request one one-way message at a time.
And only this will make the reader realize to what extent
this problem is far from trivial.

The Solution

The common store consists of:

‘“Boolean array b, ¢[l:N]; integer k”

The integer &k will satisfy 1 <k <N, bls] and c[]
will only be set by the ith computer; they will be inspected
by the others. It is assumed that all computers are started
well outside their critical sections with all Boolean arrays
mentioned set to true; the starting value of k is immaterial.

The program for the 7th computer (1 <7 < N) is:
“‘integer j;

Li0: b[i] := false;
Lil: if k 5= 7 then

Li2: begin c[f] := true;
Li3: if blk] then k := 1;
go to Ll
end

else

349



350

Edsger W. Dijkstra

Li4: begin c[z] := false;
for j := 1 step 1 until N do
if j # 7 and not ¢[j] then go to L:l

end;
critical section;
cl?] := true; b[i] := true;
remainder of the cycle in which stopping is allowed;
go to L0’
The Proof

We start by observing that the solution is safe in the
sense that no two computers can be in their critical section
simultaneously. For the only way to enter its critical
section 1s the performance of the compound statement
L4 without jumping back to Lil, i.e., finding all other
¢’s true after having set its own ¢ to false.

The second part of the proof must show that no infinite
“After you’’-“After you’’-blocking can occur; i.e., when"
none of the computers is in its critical section, of the
computers looping (i.e., jumping back to Lzl) at least
one—and therefore exactly one—will be allowed to enter
its critical section in due time.

If the kth computer is not among the looping ones,
bik] will be true and the looping ones will all find & = <.
As a result one or more of them will find in L:3 the Boolean
blk] true and therefore one or more will decide to assign
“k := 1”. After the first assignment “k := 7", blk] be-
comes false and no new computers can decide again to
assign a new value to k. When all decided assignments to
k have been performed, k will point to one of the looping
computers and will not change its value for the time being,
i.e., until b{k] becomes true, viz., until the kth computer
has completed its critical section. As soon as the value of
k does not change any more, the kth computer will wait
(via the compound statement L#4) until all other ¢’s are
true, but this situation will certainly arise, if not already

. present, because all other looping ones are forced to set

their ¢ true, as they will find ¥ # 7. And this, the author
believes, completes the proof.



Edsger W. Dijkstra

vVOI. L ole

pp. 147-148



352

Edsger W. Dijkstra

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

Ep1TOR:
For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the

" density of go to statements in the programs they produce. More

recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “‘higher level”’ programming
languages (i.e. everything except, perhaps, plain machine code).
At‘that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “making” of the corresponding process is dele-
gated to the machine.

My second remark is that our intellectual powers are rather
geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of , 88y,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the



Original Historic Documents

program text to a point between two successive action descrip-
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as ‘‘successive (action descriptions)’” we
mean successive in text space; if we parse as ‘“‘(successive action)
descriptions’’ we mean successive in time.) Let us call such a
pointer to a suitable place in the text a ‘‘textual index.”

When we include conditional clauses (if B then A), alternative
clauses (if B then Al else A2), choice clauses as introduced by
- C. A. R. Hoare (caseli] of (41, A2, --- , An)), or conditional expres-

sions as introduced by J. McCarthy (Bl — E1, B2 — E2, ---,
Bn — En), the fact remains that the progress of the process re-
mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
8 textual index points to the interior of a procedure body the
dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction”
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘dy-
namic index,’”’ inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process.

Why do we need such independent coordinates? The reason
is—and this seems to-be inherent to sequential processes—that
we can interpret the value of a variable only with respect to the

353



354

Edsger W. Dijkstra

progress of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas-
ing 7 by one whenever we see someone entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to deseribe the process progréss. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus one!

The go to statement as it stands is just too primitive; it is too
much an invitation to make a mess of one’s program. One can
regard and appreciate the clauses considered as bridling its use. I
do not claim that the clauses mentioned are exhaustive in the sense
that they will satisfy all needs, but whatever clauses are suggested
(e.g. abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

It is hard to end this with a fair acknowledgment. Am I to
judge by whom my thinking has been influenced? It is fairly
obvious that I am not uninfluenced by Peter Landin and Chris-
topher Strachey. Finally I should like to record (as I remember it
quite distinctly) how Heinz Zemanek at the pre-ALGoL meeting
in early 1959 in Copenhagen quite explicitly expressed his doubts
whether the go to statement should be treated on equal syntactic
footing with the assignment statement. To a modest extent I
blame myself for not having then drawn the consequences of his
remark.

The remark about the undesirability of the go to statement is
far from new. I remember having read the explicit recommenda-
tion to restrict the use of the go to statement to alarm exits, but
I have not been able to trace it; presumably, it has been made by
C. A. R. Hoare. In [1, Sec. 3.2.1.] Wirth and Hoare together
make & remark in the same direction in motivating the case
construction: ‘Like the conditional, it mirrors the dynamic
structure of a program more clearly than go to statements and
switches, and it eliminates the need for introducing a large number
of labels in the program.”



Original Historic Documents 355

In [2] Guiseppe Jacopini seems to have proved the (logical)
- superfluousness of the go to statement. The exercise to translate
an arbitrary flow diagram more or less mechanically into a jump-
less one, however, is not to be recommended. Then the resulting
flow diagram cannot be expected to be more transparent than the
original one.
REFERENCES:
1. WirtH, NikLaTs, AND Hoarg, C. A. R. A contribution to the
development of ALGOL. Comm. ACM 9 (June 1966), 413—432.
2. Boum, Corrapo, AND JacoriNi, GUISEPPE. Flow diagrams,
Turing machines and languages with only two formation
rules. Comm. ACM 9 (May 1966), 366-371.
Epsger W. DIJKSTRA
Technological University
Eindhoven, The Netherlands



